From idea to library

Design and implementation of a process to deliver 40,000 unique lead-like compounds

Megan Lightfoot, Lauren O'Neil, Jack Thomas, Christopher Pearce, Ian Strutt, Gavin Milne, Iain Miller, Daniel Hamza Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham, NG1 1GF, United Kingdom.

European Lead Factory (ELF)

The ELF is a €200M project (supported by the Innovative Initiative and European Federation of Pharmaceutical Industries and Associations (EFPIA)) that aims to promote drug discovery in Europe by producing a new collection of 500,000 drug-like compounds for highthroughput screening (HTS) by the public sector in a variety of therapeutic areas.

- 300,000 compounds have been donated by EFPIA partners.
- 200,000 compounds are being designed, generated and synthesised equally by Sygnature Discovery and four other SMEs in collaboration with academia.

The new libraries being synthesised will focus on: **novelty**, **shape** (eg. sp³-rich cores), **diversity potential** and innovative library design and will complement classical compound collections.

Plate up

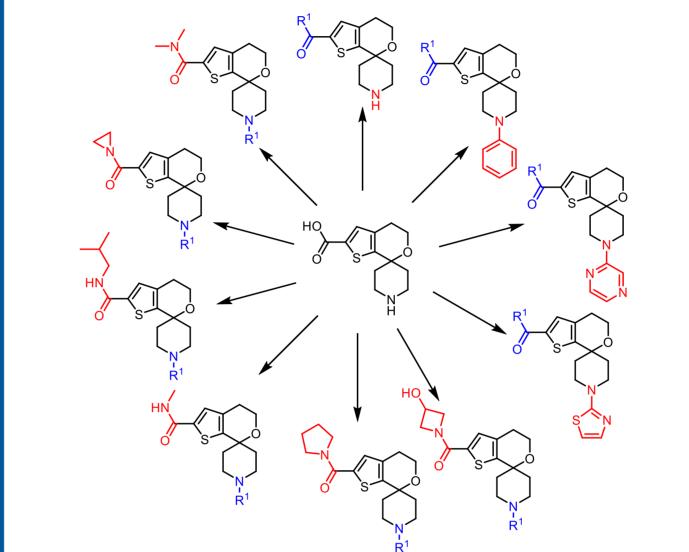
pipette

Reaction mixtures

handler or manual

prepared using liquid

Idea Generation


An idea is designed around a chemical core which is then modified to produce several diverse scaffolds.

Scaffold criteria:

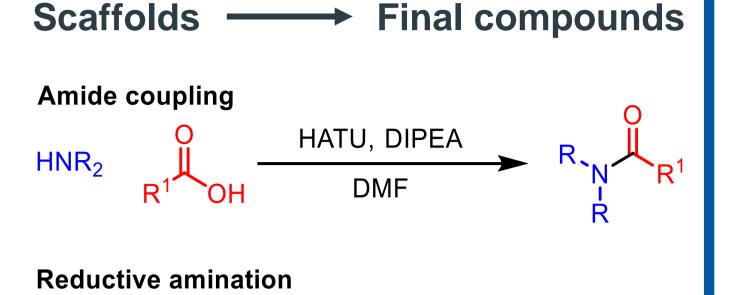
- 2 or 3 points of diversity
- Short and efficient synthetic route
- 5-6 steps
- Scalable chemistry
- Non-commercial
- cLogP <3
- MW <300
- 3D shape required
- A selection of cores generated at **Sygnature Discovery**
- Preferably amine, acid or alcohol handle
- No reactive groups in final compounds (e.g. imine, Michael acceptor...)

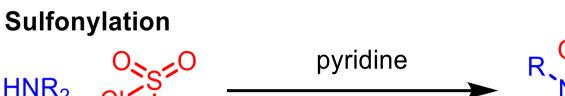
Validation

Before full production can start the **Key factors to identify**: be validated including library scaffold preparation, synthesis, purification and analysis in order to identify any possible issues.

Scaffolds produced for one idea. Typically

10 mmol of each is required


- Most robust synthesis of scaffold
- Possible issues for scale-up
- Library success rate


Compound properties validated:

- Solubility
- Stability
- Ionisation
- Absorbency
- Reactivity
- Isolation

Recovery

Purification

Boc deprotection

Example library reactions tested during validation

Reagent set

Waters UPLC

Analysis plate

Analysis plate Samples with DMSO into an

UPLC analysis Plate stacker analysis plate using enables us to the liquid handler queue up to 9

Analysis results

Focussed gradients for purification automatically generated **UPLC** retention times

Production and

Dispatch

Barcoded tubes

UPLC analysis, weighing **Analysis plate**

Submission vials

Submission vial

QC pass criteria Purity >85% by UPLC Quantity 5-50 µmol

GeneVac HT6 centrifugal evaporator

Starting materials

8-10 Scaffolds per idea

Reagent sets are stored as stock solutions in DMA in barcoded 48 well plates

Reaction plate

- 96 Well reaction plate
- 96 Reactions per scaffold
- 0.1 mmol scale
- ~800 Reactions total
- Shake at ambient temperature overnight

Filter plate

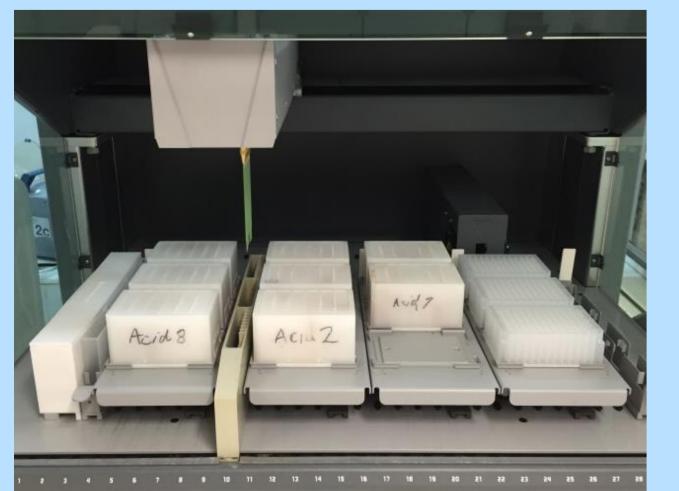
plates

Purification Reaction mixtures Semi-prep HPLC filtered prior can purify >100 purification samples a day

Barcoded tubes Fractions collected by

semi-prep HPLC into *Reformat* tubes and Liquid handler barcoded dried centrifugal by evaporation

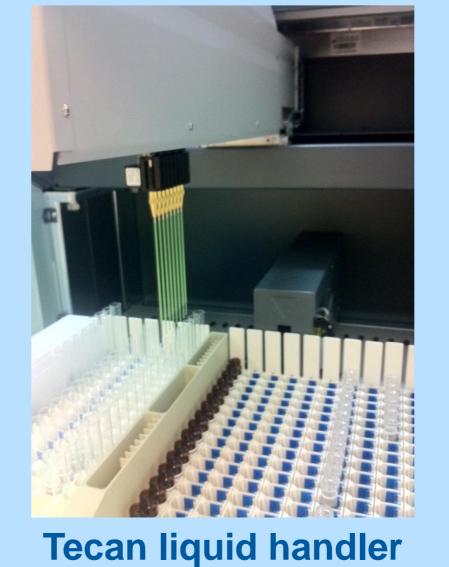
Dry compounds re-dissolved in MeOH/CHCl₃ on the liquid handler and transferred ELF for and Sygnature Discovery


> Compounds dried for a final time

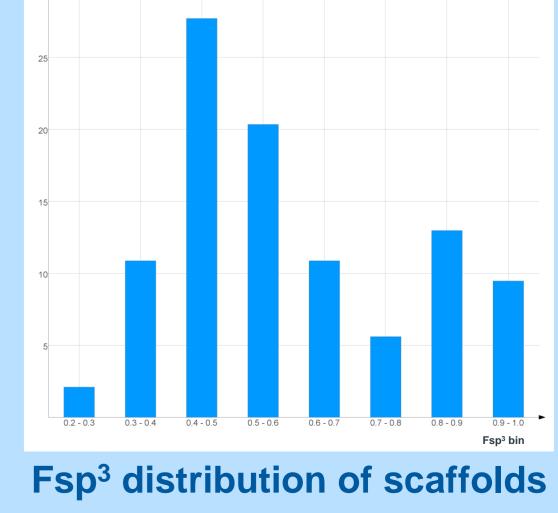
Compounds passing QC are delivered to Bioascent, Scotland

Compounds made into solutions in DMSO and added to screening collection

Compound hub


Plating up using reagent sets

Reaction plate



Waters semi-preparative HPLC

MW v cLogP of scaffolds for first 20,000

compounds

